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A Fourier analysis for evaluating the accuracy of finite element methods which solve the 

linearized shallow water equations is extended to include group velocity. The technique is first 

applied to the selection of a spattal discretization and then, assuming a specific finite element 

discretization. to finding the most accurate two-step time stepping method. 

INTRODUCTION 

Within the last decade, finite element methods have become popular for solving the 
shallow water equations. Many such methods are available since typically. each 
combines a spatial discretization with a time stepping or spectral method. The spatial 
discretization is determined by the particular finite element approach (e.g.. Galerkin), 
the approximating basis functions, and the size. shape, and configuration of the 
spatial elements. It has the effect of reducing the governing partial differential 
equations (PDEs) to a system of ordinary differential equations (ODES) in time. 
These can then be solved by one of many methods discussed in texts such as Gear 
14 1 or Lambert 171. In light of the many method combinations, it is natural to ask 
which is the most accurate. 

Several techniques are available for evaluating the accuracy of a finite element (or 
finite difference) method. Assuming a specific spatial discretization, a traditional 
analysis of ODE methods involves investigating the absolute stability region and 
calculating the truncation errors. Stability of a prospective time stepping method is 
determined by ensuring that the spectrum of the Jacobian of the ODE system, when 
scaled by At, lies in the absolute stability region of the method. Accuracy is deter- 
mined by evaluating the local truncation error, or by comparing the principal root of 
the method’s characteristic polynomial to the exponential function (which is the 
analytic result). This approach is discussed in Gear [ 4 1 and used by Praagman ( 17 1 
for analysing finite element solutions of the shallow water equations. 

A second popular technique for evaluating numerical methods which solve hyper- 
bolic PDEs was developed by Leendertse 19 1. It is based on propagation factors. 
These are ratios of the computed wave to the analytic wave after the time it takes for 
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the analytic wave to propagate one wavelength. Gray and Lynch [ 5 ] apply this 
analysis to finite element solutions of the shallow water equations. In one dimension, 
they assess various time stepping schemes in combination with a Galerkin finite 
element method and piecewise linear basis functions. 

The technique employed in this paper is an extension of a third common type (e.g., 
[ 121). It is a Fourier (phase/space) analysis whereby the amplitude and phase of the 
discrete problem are studied. The method extension is through examination of group 
velocity. Group velocity is important in all wave problems since it describes the speed 
and direction of energy propagation. For tsunami problems, it is vital since the wave 
packet speed rather than that of an individual wave determines the arrival time 1 14 I. 
Although shallow water waves have virtually the same phase and group velocity. 
their numerical model representations may not. It is therefore important to study the 
properties of both in assessing the merits of a numerical scheme. As it will be seen. a 
method which most accurately represents phase velocity may not be best for group 
velocity. 

Previous studies of group velocity in numerical methods are not common. 
Vichnevetsky (221 shows that zero group velocity characterizes a cutoff frequency 
beyond which wave solutions exhibit a spurious amplitude decay. Vichnevetsky and 
Peiffer 1231 demonstrate that spurious 2Ax waves generated by mesh refinement or 
near-discontinuities in the exact solution, travel at the group speed. Schoenstadt [ 19 1 
and Williams [27] include group velocity in their evaluation of several numerical 
methods for solving the atmospheric shallow water equations. In all these studies. 
only the effects of the spatial discretization are considered. 

A recent paper by Trefethen (211 surveys and illustrates the relevance of group 
velocity in numerical schemes. Among the important points that he discusses are the 
following: 

(i) although wave crests travel at the phase velocity, wave packets travel at 
the group velocity, 

(ii) energy travels at the group velocity, 

(iii) group speed is the only meaningful speed for studying parasitic numerical 
solutions, 

(iv) instability of an initial boundary value problem is related to the possibility 
that waves radiating out from a boundary with positive group velocity may not be 
stimulated by incoming waves with negative group velocity, 

(v) zero group velocity defines a cutoff frequency for transmission through an 
interface. 

In brief, Trefethen demonstrates that there is more to the inaccuracy of a numerical 
scheme than its truncation error. 

In addition to the inclusion of group velocity, this analysis approach has other 
advantages. Calculations to determine accuracy and stability are closely correlated 
and expressed in terms of amplitude, phase velocity, and group velocity. Unlike 
stability regions, truncation errors, and propagation factors, these are familiar 
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concepts for the physcal oceanographer. Furthermore, the same analysis technique 
can be used to evaluate a method both before and after the ODE is solved. That is. 
the analysis can asses the merits of the spatial discretization as well as the time 
stepping method. 

However, the analysis does have limited application. It requires that the PDE be 
linear, and have constant coefficients and periodic boundary conditions. (In some 
cases, analyses are possible for nonconstant coefficients. See Section 7.) A constant 
time step and a regutar mesh configuration are usually assumed as well. Although 
few problems are this simple, it is important to understand numerical behaviour in 
such a setting before introducing the additional complexities of boundary conditions 
and varying coefficients. In order to simplify the analysis, only the one-dimensional 
shallow water equations are examined in this paper. However, extensions to two 
dimensions are straightforward and have also been done. 

This paper first examines eight finite element and finite difference spatial 
discretizations. It then studies the effects of combining an ODE solver from the class 
of linear two-step methods with the particular spatial discretization, a Galerkin finite 
element method with piecewise linear basis functions. Although these choices may 
not produce the most accurate numerical method, they do effectively illustrate the 
analysis technique. In particular, two-step methods permit an accuracy optimization 
through their parameterization and iltustrate the problems that can arise from a 
spurious dispersion relationship. A Galerkin finite element method with piecewise 
linear basis functions illustrates the additional problems associated with cutoff 
frequencies and 2dx waves. Similar analysis have been applied to other spatial 
discretizations. 

In this study, little attention is given to program storage requirements and economy 
of the numerical calculations. In two dimensions, these are probably the most 
important criteria for selecting a numerical method. Therefore a complete evaluation 
of a numerical method should include not only the accuracy considerations studied 
here but also cost estimates of its implementation. In terms of computational cost, 
Weare ]26], for example, shows that finite element methods cannot compare 
favourably to finite difference methods as long as band algorithms are used in their 
solution. Of course there are many alternatives to band algorithms. A popular one 
involves “mass lumping” the matrix (e.g., ]20]). When used in combination with an 
explicit time stepping method, this procedure diagonalizes the band matrix. thereby 
greatly reducing the storage and computational cost. In fact, the resultant technique 
should be economically competitive. with explicit finite difference methods. However. 
a corresponding accuracy loss [ 2, 131 can be expected and warrants further 
investigation with the present analysis technique. 

This paper is divided into seven sections. Section 1 specifies the shallow water 
equations and their analytic solution. It also defines dispersion relationship, phase 
velocity, and group velocity. Section 2 calculates the phase and group velocities 
arising from eight finite element and finite difference spatial discretizations and 
discusses their relative merits. Section 3 introduces the class of two-step methods for 
solving an ODE. Section 4 uses these methods in combination with a specific spatial 
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descretization to solve the governing equations, Dominant phase and group velocities, 
and dominant wavenumbers are also defined and illustrated. Section 5 defines three 
accuracy measure or error functions and uses them to find the most accurate two-step 
method. Section 6 validates these accuracy measure functions with numerical tests 
and a truncation error analysis. Finally, Section 7 summarizes and briefly discusses 
the results. 

1. MATHEMATICAL BACKGROUND 

The one-dimensional linearized shallow water equations are 

au ~+gg+ru=O, (lb) 

where z(x, t) = elevation above mean sea level, U(X, t) = velocity, h(x) = mean sea 
depth, g = gravity, r = linear bottom friction coefficient. 

In the present analysis, (la) and (lb) are solved on an infinite channel (i.e., with 
periodic boundary conditions) subject to initial conditions. 

Assuming a constant depth and travelling wave solutions of the form 

where o is frequency and k is wavenumber, the dispersion relationship is 

co = i$z f (ghk* - (47)2)"2 = if5 i CO,. (3) 

The solutions are then 

z(x, t) = z,, exp(-ftt) cos(kx f ~c),t), 
I/? 

exp(- +rt) cos(kx + w,t + 6) 

exp(- $t) cos(kx - o,t - r3>, (4) 

f!? = arctan($r, CO,). 
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Using (3), phase and group velocities are found from their respective definitions, 

and 

Waves whose propagation speed C is not independent of k are said to be dispersive. 
This implies 1 Cl # 1 Gl. When travelling in a group, dispersive waves seem to be 
created at the leading or trailing edge of the packet, and disappear at the other edge. 

Changes in the solution over the interval At are expressed through the amplitude 
and phase of the function 

with w substituted from (3). 

A= exp(iwdt) (6) 

Dispersion relationships, phase velocities, and group velocities can also be found 
for numerical methods by requiring nontrivial travelling wave solutions to the 
discretized versions of (la) and (lb) with constant At and Ax. In this case. 2 is the 
root of the associated characteristic polynomial. It is also an eigenvalue of the 
amplification matrix resulting from a linear stability analysis I18 I. Due to this 
relationship, L will be referred to as an eigenvalue throughout this paper. Richtmeyer 
and Morton [ 18) call it an amplification factor. 

Although analytic waves may be nondispersive, all discrete models of them are 
dispersive 12 1 1. 

2. AN ANALYSIS OF SPATIAL DISCRETIZATIONS 

Dispersion relationships may be obtained for the system of ODES which arise from 
a particular spatial discretization of (la) and (lb). The resulting phase and group 
velocities may be interpreted as arising from a numerical scheme where the time 
dependency can be solved exactly. They thus provide a measurement of inaccuracy 
solely due to the spatial discretization. However, this does not mean that a subse- 
quent time discretization will contribute further errors. It is possible that some 
cancellation may occur and the fully discretized equations may be more accurate. 

The analysis approach is similar to the spatial Fourier transform method used by 
Schoenstadt 1191 and Williams 1271. Their analyses are for simplified two- 
dimensional versions of (la) and (lb) and include some of the following 
discretizations studied here: 

(Dl) a centred finite difference method with an unstaggered grid, 

(D2) a centred finite difference method with a staggered grid, 

P3) a Galerkin finite element method with piecewise linear basis functions for 
both variables and unstaggered elements. 

CD41 a Galerkin finite element method with piecewise linear basis functions for 
both variables and staggered elements, 
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(D5) a residual least squares finite element with piecewise linear basis 
functions for both variables and unstaggered elements, 

P6) a Galerkin finite element method with unstaggered elements, piecewise 
constant basis functions for one variable and piecewise linear for the other, 

037) a Galerkin finite element method with unstaggered elements, piecewise 
linear basis functions for one variable, piecewise quadratic for the other and 

(a) Ax = distance between adjacent “linear variables” or 

(b) Ax = distance between adjacent “quadratic variables,” 

0’8) a Galerkin finite element method with unstaggered elements, piecewise 
quadratic basis functions for both variables, and 

(a) Ax = distance between nodes of the same type, (i.e., between mid- 
element nodes or end-element nodes), 

(b) Ax = distance between adjacent nodes. 

For 7 = 0, the spatially discretized equations and their corresponding dispersion 
relationships are listed in Tables I and II, respectively. Figure 1 plots the nondimen- 
sional phase and group velocities versus kAx/n. Both analytic velocities are iden- 
tically equal to 1.0. 

The (0, rc] range for kAx reflects grid sampling per wavelength. The upper value 
corresponds to the shortest resolvable wavelength, namely, 2Ax, while the lower value 
represents infinite sampling. Numerical models are usually designed so that desired 
wavelengths are at least 2OAx (i.e., kAx/n < 0.1). Figure 1 shows that most of the 
selected discretizations are quite accurate in this range. 

The interpretation of Ax necessitates two representations for (D7) and (D8). In 
both cases, representation (a) is simply the first half of representation (b) stretched by 
a factor of 2. Piecewise quadratic approximation requires two types of basis function 

2 

r 
L, 

CI, 

2 

C I 

I I I 1 2 

Jz 
L “0 

2 

-2 I 
I I I 1 

0.00 0.25 0.50 0.75 1.00 000 0.25 0.50 0.75 1.00 

kAxh kAxh 

FIG. 1. Nondimensional phase and group velocities for several spatial discretizations. Analytic 
values are identically equal to 1.0 and scarcely distinguishable from those of (D8a). 
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TABLE II 

Dispersion Relationships for the Spatial Discretizations of Fig. 1 

Spatial 
Discretization 

Dl 

wdx/(gh) “2 

f sin(kdx) 

D2 

D3 
3 sin&lx) 

* (2 + cos(kix)) 

D4 

D5 

D6 

* J- sin(+klx) + 5 sin(kdx/2) 
4 ( 2 + cos(kdx) ) 

D7a 
2(4 - cos(!dx)) 

I 

I/2 

D7b 
2(4 - cos(2klx)) 1 

l/Z 
” *sin(kdx) (2 + cos(2kdx))(3 - cos(2k~lx)) 

D8a 

D8b fsin(kdx) 
( 

(10 - cos’(kAx))“’ * 2 cos(klx) 
2 - cos2(kLlx) 1 

and the introduction of mid-element nodes (e.g., [20]). Consequently, waves of length 
Ax may exist in the approximated variables. In order to represent these waves in 
Fig. 1, either the upper limit for kAx should be extended to 2~. or Ax should be 
halved. The latter approach was adopted. 

Ideally, the phase and group velocities of a spatial discretization should be close to 
their analytic values. Few of the discretizations shown in Fig. 1 are close, particularly 
for large wavenumbers. Since 2Ax waves are frequently troublesome in shallow water 
models [24], their behaviour is important. Figure 1 shows that 2Ax waves for (Dl), 
(D3), (D7b), and (D8b) have zero phase velocity and thus do not propagate. Their 
corresponding group velocities are negative. Hence the energy associated with these 
waves is moving, but in the wrong direction. One might therefore see the same 
generation of spurious waves at an interface with these discretizations as was 
demonstrated by Trefethen [2 11. Furthermore, an inappropriate choice of boundary 
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conditions could also cause the instability that he mentions. Zero group velocities for 
dis~retizations (D2), fD4), (D6), and (D7a) indicate that although 2d.x waves are 
propagating, the associated energy is not. 

Cutoff frequencies exist for (Dl), (D3), (D7b), and (D8b) since they all attain zero 
group velocity for waves longer than 2d.x. Precise values for these frequencies can be 
calculated from the dispersion relationships in Table II. As demonstrated by 
Trefethen [ 211, when using one of these discretizations in a problem containing an 
interface (e.g., due to a mesh refinement or a change of coefficient), it may happen 
that a wave incident from one side has a frequency which is not sustainable on the 
other. As shown by Vichnevetsky 1221, difficulties may also arise with time-varying 
boundary conditions which oscillate at frequencies higher than the cutoff. 

Graphically it would seem that (D8a) is the best spatial discretization. In actual 
computations, it may not be. Representation (D8a) ignores waves shorter than twice 
the distance between end-element nodes. This is valid provided measures such as 
artificial viscosity can effectively eliminate these waves. Otherwise, intra-element 
oscillations can exist and may contaminate the highly accurate longer waves. An 
additional complication for (D8) is that only two of its four dispersion relationships 
(as shown in Table II) have nondimensional phase (and group) velocities whose 
magnitudes tend to 1.0 as kAx tends to zero. The other two tend to k5, and thus are 
not consistent with the analytic solution. If waves represented by these spurious 
curves are generated and sustained in a numerical model, further inaccuracies can be 
expected. Cullen ]2] investigates (D8) in more detail. 

Provided intra-element oscillations can be avoided, (D7) is another promising 
spatial discretization. Walters and Carey 1241 recommend the linear basis functions 
for Z(X, t): and the quadratic functions for u(x, t), since this choice generates fewer 
spurious modes than vice versa. Consistent with this analysis they remark that a 
small amount of dissipation may be necessary in the nonlinear equations to remove 
2Ax waves in the velocity field. 

Figure 1 also indicates good accuracy with (D4) and (D6). In fact (D4) is superior 
to the three vorticity-divergence formulations investigated by Williams [ 27 ]. Unfor- 
tunately, a convenient triangular element analog in two dimensions is not apparent, 
especially for the case of irregular geometry. Discretization (D6) is also difficult to 
extend to two dimensions since the piecewise constant variable is discontinuous at the 
inter-element nodes ]24]. However, the “wave equation” finite element method of 
Gray and Lynch ]5, lo] has the same dispersion relationship (thus phase and group 
veIocity) as (D6) in one dimension [ 31, and has been extended to two dimensions. In 
some sense it may therefore be viewed as a two-dimensional version of (D6). 

A realistic positive value for t would have little effect on the plots of Fig. 1. ,The 
analytic nondimensional phase velocity would become slightly less than 1. for all 
wavenumbers, and the associated group velocity would become slightly greater than 
1. All velocities for the eight spatial discretizations would also exhibit small shifts in 
varying degrees. All velocities would equal zero for small k, since a wave solution to 
(la) and (lb) cannot be supported there. As seen from (3), this occurs when w, is 
imaginary. However, a more significant change would occur with (D7). Its secondary 
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or spurious dispersion relationship would no longer be zero, thereby permitting the 
existence of associated spurious waves in the numerical solution. 

The preceding analysis illustrates how phase and group velocity accuracy can aid 
in the selection of a spatial discretization. Because of its restrictive nature (i.e., one- 
dimensional linearized equations, constant dx and h, r = 0.) and the fact that 
economy of the calculations has been ignored, an analysis of this type should be only 
one part of the selection process. It must also be stressed that implementation of a 
time stepping technique can change the relative accuracy of two spatial 
discretizations. Analyses of the fully discretized equations should therefore always 
accompany analyses of spatial discretizations. 

3. A CLASS OF ODE METHODS:LINEAR TWO-STEP METHODS 

Pinder and Gray [ 161 and Walters and Cheng 1251 recommend a centered time 
stepping scheme for solving the system of ODES that arise from the spatially 
discretized versions of (la) and (1 b). With the one-step method 

Y n+’ -y” =dt[ey + (1 -S)f”] (7) 

for solving the ODE 

$-f(Y)1 (8) 

a centered scheme is characterized by identical central times for the left and right 
sides of (7). In this case, the left and right sides are respectively centered over t,+ ,iz 
and I~.,.~. Therefore f3= 0.5 represents a centered scheme. With uncentered versions 
of (7), these authors found either excessive damping of the solution or substantially 
incorrect phases. This result is not surprising since (7) is second order accurate (i.e., 
the truncation error is U(dt3)) when B = 0.5, and first order otherwise. In order to 
have the desirable behavior associated with centered schemes it is therefore wise to 
insist on at least second order accuracy. 

A broad class of numerical techniques for solving ODES are multistep methods. As 
the trapezoid scheme is the only second order one-step method, within this class 
(outside this class, the second order Runge-Kutta method is also one-step), the larger 
class of two-step methods will be considered. For solving (7), all two-step methods 
are characterized by the formula [ 4. 7 ] 

a~~“+2+~,~““+~,y”=At(bzf”+Z+blf”~’+b,,~~), (9) 

where +, a,, a,, b,, b,, and b, are real numbers. In the sense that both sides of (9) 
can be multiplied by any constant and not alter the relationship, this equation 
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requires a normalization. Lambert ] 7 ] suggests a, = 1, while Gear 14 ] recommends 

b, t b, + b, = 1. 

The latter convention will be adopted here. 
For at least second order accuracy, only two parameters remain free. Choosing 

them to be a, and b,, the others are specified as 

a, = a, - 1, b,=;-n,+b,, 

a, = 1 -2a,, b,=j+a,-2b,. 
(11) 

These relationships are derived in (4, 7, 8]. 
All second order two-step methods are centered. Some familiar ones with their 

(a*, b,) values are: trapezoid or Crank-Nicolson (1, f); Gear stiffly stable [4], (3, 1); 
Adams-Bashforth, (l,O); Adams-Moulton, (1, 6); Mime, (4, b); and leapfrog, 
(4,O). Explicit methods are characterized by b, = 0. Third order methods include 
Adams-Moulton and have the additional constraint 

b, = +a, - -$-. (12) 

Milne’s method is fourth order. 
A necessary and sufficient condition for stability of a second order two-step 

method is a2 > 0.5. This follows from the root condition [4]. Multistep methods 
which satisfy this condition are called zero-stable 171. 

4. THE FULLY DISCRETIZED EQUATIONS 

This section studies the effects of combining an ODE from the class of second 
order two-step methods with the particular spatial discretization (D3). Although 
Section 2 shows that (D3) is not the most accurate discretization, it is commonly 
used and effectivety illustrates the analysis technique. Similar analyses have also been 
performed for (D7) and the “wave equation” approach of Gray and Lynch ]5, IO]. 

The four numerical eigenvalues arising from a two-step method solution of the 
ODES resulting from (D3) are 

(i) for kdx = 7r, 

A, =&= 1, A,=~,= @z-l); 
a2 

(ii) otherwise, 

(13a) 

A 
1.2 

= -T, f (T,* -4ToTy2 

27-Z 

~ _ -R, f (R,’ - 4R~R2)“= 
3,4 - 

2R2 
I (13b) 
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where 

T, = a, t b,S+, T,=a, tb,S+, T,=a,+b,S,, 

R,=a,+b,S-, R,=a, +b,S-, R, = a, t b,S-, 

s*=+Al*i [gh ($)‘( *y;z;;))* - &AI) ‘1 lit (13c) 

Complex eigenvalues occur in conjugate pairs corresponding to progressive and 
retrogressive travelling waves. Two progressive waves arise when all four roots have 
nonzero imaginary parts. In this case, only the principal root represents the desired 
solution, the other is called spurious or parasitic. Real valued eigenvalues signify a 
nonpropagating wave and frequently arise for 2Ax waves (when kAx = n). 

Assuming a travelling wave solution and no multiple eigenvalues, the component of 
z(x, t) (or u(x, t)) with wavenumber sampling kAx has the following complex valued 
amplitude at time step n: 

z,(kAx) = 2 Pj(kAx)(Aj(kAx))” 
j=l 

for some functions Pj(kAx). As n increases this amplitude is dominated by the eigen- 
value with the largest modulus. For stability, it is necessary that the dominant eigen- 
value have modulus less than or equal to 1.0 for all kdx. This is a special case of the 
von Neumann stability condition 

IA/ < 1 t O(At). (15) 

The O(At) term is usually omitted (e.g., [ 12, 181) when the exact solution does not 
grow exponentially. Since h(x) is constant and r > 0, this is the case here. 

Each numerical eigenvalue has its own dispersion relationship and thus phase and 
group velocity. Dominant eigenvalues imply dominant dispersion relationships and 
dominant velocities. Since the same eigenvalue may not be dominant for all kdx, 
switch points may exist. At these points the dominant dispersion relationship is 
usually multivalued. Numerical difficulties can be expected at wavenumbers where 
the parasitic dispersion relationship dominates. If through boundary conditions, 
initial conditions, or an interface, parasitic waves or wave packets are generated at 
such wavenumbers, they will eventually overshadow principal waves of the same 
length. 

Associated with each dominant dispersion relationship is a dominant or favoured 
wavenumber. At this kAx value, the amplitude of the dominant eigenvalue is 
maximum. A favoured wavenumber therefore denotes the wave which grows most 
rapidly, or decays most slowly, as time advances. Dissipative schemes such as Lax- 
Wendroff have amplitudes curves which decrease with increasing wavenumber [ 121. 
Small wavenumbers therefore dominate and shorter waves are increasingly damped. 
Schemes where kAx = 71 is favoured can expect problems with 2Ax waves. 
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Figure 2 illustrates the numerical eigenvalues, dispersion curves, and phase and 
group velocities for three two-step methods, Values for the analytic and spatially 
discretized solutions, and the discrete numerical solution (i.e., from the eigenvalues of 
the matrix equation solved at each time step) arising from a ring domain test model 
with 10 grid points, are also included. Results are parameterized in terms of 

TAX 
“6 = ( g~)l/? ’ and (16) 

The latter parameter is commonly referred to as the Courant number. 
The eigenvalue spectra diagrams show ranges of the four numerical eigenvalues for 

kAx in the interval (0, 71.1. The unit circle is included as a reference for stability. All 
eigenvalue paths lie entirely in either the nonnegative imaginary half plane and 
correspond to progressive wave solutions, or in the nonpositive imaginary half plane 
and correspond to retrogressive waves. For these examples, paths of the principal 
numerical solutions lie almost entirely in either the first or fourth quadrants, while the 
spurious numerical solutions are in the second and third. As kAx increases from zero. 
the principal progressive numerical eigenvalue moves in a counterclockwise direction 
from the positive real axis, When kAx is approximately 2x/3, this excursion reverses 
and returns to the real axis along exactly the same path. Platzman / 15 1 refers to the k 
value at this turning point as the folding wavenumber kf and discusses the aliasing 
problems that result from its existence. At the folding wavenumber, the real part of 
the principal progressive dispersion curve is maximum and the corresponding group 
velocity is zero. The associated frequency is therefore a cutoff frequency. Although 
the analytic and principal numerical eigenvalue paths are close when k < k,, it cannot 
be determined from this diagram if adjacent points in these paths arise for the same 
kAx value. 

The second series of diagrams in Fig. 2 permits such a comparison by plotting 
angular displacement (real part of the dispersion relationship) as a function of kdx. 
Only the progressive wave solutions have been shown. Notice that curves arising 
from the fully discretized numerical solution are determined to a large extent by those 
solely due to .the spatial discretization. However, the principal numerical dispersion 
curve in the second example (leapfrog method) does illustrate that a subsequent time 
discretization can improve accuracy for some range of kdx. For larger kAx values. 
the first and third examples demonstrate that the spurious numerical solution can 
provide a better approximation to the analytic dispersion curve than the principal 
numerical solution. 

The third series of diagrams permits determination of instability and the dominant 
numerical eigenvalue. The first example shows a switch of dominance between the 
principal and spurious numerical eigenvalues. Specifically, the principal eigenvalue is 
only dominant for 0.325 < kAx/n < 0.880. In the second example, the spurious eigcn- 
value is both dominant and unstable, while in the third, the principal eigenvalues is 
dominant and unstable in the neighbourhood of the folding wavenumber. 

in each example the dominant and folding wavenumbers are identical and approx- 
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imately equal to 2rc/3. This is apparent from the eigenvalue spectra plots since the 
reversal point in each eigenvalue path corresponds to the maximum amplitude. 

The fourth and fifth diagrams plot the corresponding nondimensional phase and 
group velocities. (They do not have a limiting value of 1.0 at kdx = 0 because 
nonzero friction does not permit a wave solution there.) Phase velocities for the first 
example are less than the analytic values thereby indicating that the numerical wave 
solutions travel too slowly. In fact, 2.4x waves do not travel at all. Group velocities 
for these cases are also too small and are seen to become negative beyond the folding 
wavenumber. This indicates energy propagating in the wrong direction. Dominance of 
the spurious numerical eigenvahre in the second example resuits in substantially inac- 
curate phase and group velocities. Switching of the dominant eigenvalue in the first 
example produces double-valued phase and group velocities at the switch points. 

5. AN ACCURACY ANALYSIS 

The preceding discussion suggests three functions to measure accuracy of the 
numerical solution; one for each the amplitude, phase velocity, and group velocity. 
Their respective definitions are 

M,= $ , I I 0 (174 

M 
F 

=I Gn-Ga 
Go ’ 

where A,, is the dominant progressive numerical eigenvalue, A, is the analytic 
progressive eigenvalue, and C,, C,, G,, G, are the corresponding phase and group 
velocities. 

The velocity accuracy measures are simply relative errors. Negative values denote 
waves travelling too slowly while zero values are optimal. For example, -0.01 
denotes a numerical velocity which is 1 oi too slow. The amplitude measure is a ratio 
denoting the growth (or decay) factor per time step relative to the analytic solution. 
Values greater than the optimum of 1. signify a solution which will decay too slowly 
or grow too rapidly. After n time steps, the ratio of the numerica amplitude to the 
analytic will* be (Pn,)“. 

Figures 3 and 4 show the accuracy measure contours as functions of the second 
order two-step parameters a, and b, (designated there by A, and B,). In all plots, a 
dotted line represents third order methods while asterisks locate the six familiar 
methods listed in Section 3. The stability region is bounded to the left by a, = 0.5 and 
from below by the heavy solid tine. All methods corresponding to (a,, b2) values 



TWO-STEP TIME DISCRETIZATIONS 469 

kAX/fl PHASE VELOCITY GROUP VELOCITY AMPLITUDE 

05 1.0 1.5 2.0 2.5 0.5 IO 1.5 2.0 25 05 IO 15 20 25 

1.5 

IO 

82 

05 05 

00 0.0 

I5 I 5 

0.20 
IO IO 

a2 82 

05 05 

00 00 

I .5 I 5 

0.40 
I .o IO 

82 82 

05 0.5 

00 0.0 
05 I.0 I.5 2 0 2.5 0.5 IO 1.5 20 2.5 05 I.0 1.5 2.0 2.5 

A2 A2 A2 

FIG. 3. Accuracy measure values forf, = 0.1 and f, = 1.0. 

outside this region have a dominant eigenvalue modulus greater than 1.0 for some 
kdx. They will therefore be unstable. 

Figure 3 shows accuracy measure changes as kAx increases and f, and f2 remain 
fixed at 0.1 and 1.0, respectively. Notice that the most accurate methods may not 
coincide for all three measures or even lie within the stability region. Thus a method 
which is most accurate for one kAx value may be unstable for others. Also notice 
that a method which has more accurate phase velocity may not have more accurate 
group velocity, and vice versa. For example, with kAx/r = 0.4 Adams-Bashforth 
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FIG. 4. Accuracy measure values forf, = ‘1.0 and kdx > 0.1 

((a,, b,) = (I, 0)) has a better phase velocity than Adams-Moulton ((a,, bJ = 
(1, &)); but the latter has a better group velocity. (Since both methods are unstable, 
this is admittedly a poor example.) High accuracy measure values along the lower b, 
axis arise because the parasitic eigenvalue is dominant. 

In most numerical models, desired waves have kAx < rr/lO (wavelengths longer 
than 2OAx). Figure 4 illustrates the accuracy measure changes as f, increases with 
kAx and f2 fixed at z/l0 and 1.0, respectively. The stability region has the lower 
boundary b, = 0.5~~ for f, = 0.0 and becomes less restrictive as f, increases. In all 
cases, the most accurate and stable methods lie on, or very close to this line. With 
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fi = 0.5, the same series of plots reveals similar patterns but a less restrictive lower 
boundary for stabilty. Optimal accuracy now occurs along the dotted line or as close 
to it as stability permits. 

Choosing the most accurate two-step method will depend on f, , fi, kdx, and the 
relative importance of amplitude and velocity. In most cases, accuracy measure and 
stability results indicate that all methods along the line b, = 0.5~~ are very good 
choices. In fact, the four numerical eigenvalues for all methods in this subset are 

- 1 1 S+P 
I 

= 
1 + S+/2’ 

A 1 -s-/2 
2 

= 
1 + s-12’ 

and 

were S, and S are defined in (13b). The first two are principal numerical eigen- 
values and are independent of a2. They are identical for all methods. The other two 
spurious eigenvalues vary with the two-step method and are constant for all kdx. 
Hence the associated numerical solution will not propagate. Provided 1, and /1? 
dominate, all accuracy measures (and numerical solutions after many time steps) for 
this subset of methods will be identical. However, for some wavenumbers, ;1, may 
dominate and the accuracy measures and numerical solution will vary with a,. From 
this perspective, the Crank-Nicolson method (a, = 1) is optimal within the subset 
because both its spurious eigenvalues are zero and thus can never dominate. 
Furthermore, being a one-step method it should also have the most economical 
storage requirements. However, it is implicit and may be expensive with regard to 
computing time. No second order explicit method exists within the subset. 

6. VALIDATION OF THE ACCURACY MEASURES 

In order to validate the previous accuracy measure analysis, truncation errors were 
calculated and several numerical tests were performed. Depth, Ax and At were 
constant throughout each test and the additional complication of boundary conditions 
was avoided by choosing a ring as the test domain. All tests were initial value 
problems where the propagation characteristics of one or two progressive waves were 
studied as they travelled around the ring. Numerical solutions were obtained with a 
Galerkin finite element method which combined (D3) with a second order two-step 
method for solving the ODES in time. 

Two series of tests were made. The first was designed for checking only amplitude 
and phase velocity and was characterized by initial conditions which were spatially 
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sampled values of a travelling wave (as given by (3)) with wavelength equal to the 
ring circumference. 

Five test problems were selected, each with& ,fi, and &X,/X values corresponding 
to one of the plots in Figs. 3, 4, or the counterpart to Fig. 4 withf, = 0.5. Wavelength 
and depth were chosen so that the resultant problem would be realistic for semi- 
diurnal tides along a one-dimensional continental shelf. 

Each test problem was run for approximately ten periods and solved with ten 
different second order two-step methods. If the numerical solution remained stable, a 
spectral analysis of the z(x, t) and U(X, t) values over the ring was first used to 
determine if the origina travelling wave had dispersed into other wavelengths. As 
expected for linear equations, this never occurred. The amplitude and phase lag for 
the wave were then calculated and compared to the analytic result. The amplitude 
change per time step and the nondimensional phase velocity were also calculated and 
compared to the values predicted by a dispersion analysis of the numerical method. 
From these model values, ratios were formed as in (17) and compared to the 
accuracy measure values. 

The ten second order two-step methods which were used to solve the five test 
problems were loosely selected upon the following criteria: 

(i) representation of most regions in the domain 0.5 < uz < 2.5, 0.0 < h, < 
1.5; 

(ii) inclusion of some well-known methods; 
(iii) inclusion of some expected unstable methods (i.e., those for which 

b, < fad, 

(iv) inclusion of some methods with small truncation errors. 

The chosen methods are listed in Table III and shown in Fig. 5. 
The truncation error which arises from combining a second order two-step method 

with (D3) is 

+ U(AxS) O(At) + O(dt”) O(dx), (19) 

where z = z(x, t) and u = U(X, t) are the true solutions to (la) and (lb). Methods 
whose parameterization satisfies (12) therefore have a smaller truncation error, and 
Mime’s method is minimal. The test methods denoted by (a,, b2) = (1.0, -417) and 
(2.0, .9 17) have smaller error constants than the others. In the subsequent discussion 
they will be referred to as M3 and M4, respectively. 

Results for the five test problems are given in Table IV. Initial conditions at times 
0 and At were specified exactly. A run was judged unstable when the absolute value 
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TABLE III 

Second Order Two-Step Methods Used in the Numerical Tests 

a2 

b, 

1.0 

0.5 

Gear 
Stiffly 
Stable Leapfrog 

0.75 1.0 2.0 0.6 2.5 1.5 1.0 0.5 0.5 

0.75 0.417 0.917 0.3 1.25 1.0 1.25 1.0 0.0 

of the first elevation point became greater than ten times the initial amplitude z,, of 
1.0. Only the Adams-Moulton and leapfrog methods became unstable and only the 
latter was unstable for all tests. Instability can occur even though )A / < 1. for the 
wavelength of the initial travelling wave. During the numerical computations round- 
off errors produce signals at all wavelengths. So if )JI > 1. for any kdx, this signal 
will grow withut bound and eventually dominate the initial wave. 

TableIV shows that the dispersion analysis and test model results are very close. In 
most cases, differences in the amplitude changes and nondimensional phase velocities 
occurred in the fifth digit. Consequently, accuracy measures calculated from the test 
models were virtually the same as those from the dispersion analysis. In fact, only for 
the second problem and the method (a,, b) = (0.5, 1.0) are the discrepancies as large 
as 1%. 

The relative performance of M3 and M4 varied with each test. With tests 4 and 5 
they most accurately represented phase velocity and amplitude decay. With test 2 and 

1.5 I I I 

b* 
l ‘02y 

, 
, 

/ 
/ 

0.5 - .fl’ 
/’ l 

/ 
B’ 

0.0. I I I 

0.5 1.0 1.5 2.0 2.5 

FIG. 5. The (a,, bZ) coordinates of the second order two-step methods used in numerical tests. 
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3, they had accurate velocities but were unstable. With test 1, M4 was most accurate 
while M3 was unstable. The truncation error analysis therefore predicted the high 
accuracy, but did not foresee the potential stability problems. This is to be expected. 

Figure 6 shows the z(x. t) and U(X, t) profiles around the ring domain for test 
problem 1 when solved analytically and with the Gear method. The wave is moving 
leftward and the numerical solution is seen to be too slow (by 3 o/O as calculated from 
values in Table IV). After 42 time steps, this translates to a phase discrepancy of 
21.9” between the numerical and analytic solutions. It is also evident that the 
numerical amplitude is not ‘decaying as quickly as it should. An error of 0.234 o/o in 
1111 (from Table IV) in this case compounds to an amplitude error of 10% after 42 
time steps. 

The second series of tests is similar to the first but permits checking of the group 
velocity calculations. Two travelling waves of equal amplitude but different 
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FIG. 6. Elevation and velocity profiles for problem 1 in the first series of numerical tests. (-) 
numerical solution, (---) analytic solution. 

wavelengths were now initially specified on the ring domain. As time progresses their 
combined effect is a short wavelength carrier wave moving inside and at a different 
speed than a long wavelength envelope (e.g., see Fig. 8). Algebraically, this is seen 
[ 11 by considering two close frequency/wavenumber coordinates, (w, , k,) and 
(wz, k2), on a dispersion curve as shown in Fig. 7. Defining 

wo = f<w, + %), k, = :(k, + k,), 

‘AW=fIW*-W,I, Ak=;lk,-k,/, 
(20) 

I I I I I I 
bk 

4 ko k* 
WAVENUMBER 

FIG. 7. A sample dispersion curve. 
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the combined effect of two equal amplitude progressive waves at these frequencies is 
then 

A cos(co,t - k,x) +A cos(w,t - k,x) = 24 cos(~o~ - k,x) cos(Akx -AC&). (21) 

This represents an envelope with wavenumber Ak and a carrier wave with 
wavenumber k,. As k, and k, approach k,, the speeds of the envelope and carrier 
waves approximate the group and phase velocity, respectively, since 

@PO) C(k~) = k = 
0 

and aw(ko) G(k,) = ak = 

So if k, and k, are sufficiently close, speeds of the envelope and carrier waves are 
approximately G(k,) and C(k,), respectively. 

Numerical tests to measure the group velocity using the preceding approach have 
an additional complication. Since the eigenvalue ampIitudes for wavenumbers k, and 
k, are generally not the same, the two waves do not decay (or grow) at the same rate. 
So even though they may have equal amplitudes initially, after one step, there is a 
slight difference. In order that (21) be a reasonable representation of the two waves, 
all numerical tests were run for only a few time steps. 

In all numerical experiments wavelengths L, and L, of the two travelling waves 
were chosen so that the ring circumference L was one lobe of the envelope (as in 
Fig. 8) and L/L, and L/L, were both integer valued. Consequently, for this series of 

TIME STEP 0 

NUMERICAL SOLUTION 
2.0 

5 1 .o 

!= 
9 5 0.0 

” 
-1 0 

-2 0 

ANALYTIC SOLUTION 
2.0 

TIME STEP 5 TIME STEP IO 

DOMAIN DOMAIN DOMAIN 

FIG. 8. Numerical and analytic elevation profiles for problem 6 in the second series of numerical 
tests. The Crank-Nicolson method is used for time stepping. (-) carrier wave. (---) envelope, (*) 2 
value. 
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tests the parameter values fi, fi, and kAx/n for the six selected test problems could 
only approximate those for one of the accuracy measure plots in Figs. 3 and 4, or the 
counterpart to Fig. 4 with fi = 0.5. 

Assuming the z(x, t) and u(x, t) profiles around the domain can be approximated 
at any time step by 

A cos(k,x - 4,) . B cos(Akx - #J, 

where k, and Ak are specified, the parameters A, B, d,, and dZ then characterize the 
wave packet. Specifically, if k, and k, are sufficiently close, then AB is the amplitude 
of the envelope and ($,/k,t) and @,/Akt), respectively, approximate the phase and 
group velocity. Values for these parameters were calculated from nonlinear least 
squares fits to the z(x, t) and U(X, t) profiles. In all cases, velocities and amplitude 
changes were the same for both variables. 

All tests were for only ten time steps with the initial conditions at times 0 and At 
specified exactly. The same ten second-order two-step methods were tested in this 
series as before. 

Results for these numerical tests are presented in Table V. Dispersion analysis and 
test values are not as close as before but due to the several approximations involved, 
this was expected. Comparisons between tabulated results with the same f,, f,, and 
kAx/n values (e.g., test 1 in the first series and test 2 in the second) provide an 
estimate of the error associated with these approximations. In all cases, increasing the 
number of grid points in the domain would decrease AkAx and reduce this error. 

For most tests, differences between the dispersion analysis and test model estimates 
of the phase and group velocity, and the eigenvalue amplitude were less than 1%. The 
two-step method with the poorest correspondence was (LZ~, b2) = (0.5, 1.0). This was 
also poorest for the first series of tests and is because the parasitic eigenvalue is only 
slightly smaller than the principal eigenvalue. Many time steps are therefore required 
before the energy assigned to the parasitic solution by the initial conditions becomes 
insignificant. In fact, were it not for round-off errors and initial conditions which are, 
in varying degrees, inconsistent with each numerical method, the results from the first 
series of tests would be exactly the same as those predicted by the principal 
numerical eigenvalue. 

Throughout the second series of tests, M3 and M4 most accurately represented the 
phase and group velocity. In fact, only for tests 1 and 6 were their amplitude decay 
factors not the most accurate. These two tests have the highest kAx values thereby 
suggesting that difficulties with these methods arise with shorter wavelengths. Plots 
similar to those of Fig. 2 confirm this. The 12 1 values for test 6 indicate future 
instability. Although those for test 1 suggest stability, Fig. 3 indicates magnitudes 
greater than 1. at other wavelengths. Hence eventual instability can be expected here 
also. 

Due to the shortness of the tests, instability (judged as before) occurred only once. 
Had the runs been longer, dominant eigenvalues with magnitudes greater than 1.0 
would have caused other numerical solutions to become unstable. 
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Figure 8 illustrates the results of solving test problem 6 with the Crank-Nicolson 
method. Both travelling waves are again moving leftward and decaying at the rate of 
4% per time step. The phase velocity is larger than the group velocity causing the 
carrier wave to move leftward inside the envelope. Analytic values are also shown 
and after 10 time steps have the following features relative to the numerical solution: 

(i) an envelope amplitude which is about 11% smaller, 
(ii) a carrier wave which is about 61” further advanced, 

(iii) an envelope which is about 16” further advanced. 

Even though the numerical group velocity error is larger than the numerical phase 
velocity (29% vs. 10% from Table V), the envelope has less phase error after 10 time 
steps because its frequency is smaller by a factor of 11. 

The results of both sets of numerical tests validate the accuracy measure 
calculations of Section 5. Only for the method (a,, b,) = (0.5, 1.0) were there notable 
discrepancies between the test results and the accuracy measure calculations. These 
can be attributed to the fact that the spurious and principal numerical eigenvalues 
had virtually the same magnitude. Hence, over the test period, neither one dominated 
the other. 

The performance of methods M3 and M4 confirms the high accuracy predicted by 
their truncation errors. An investigation of their absolute stability regions could be 
expected to predict the instability. The relatively good performance of methods in the 
subset 6, = +a, is also substantiated by (19). They all have the same error constant. 
In fact, for each constant e, all methods related by 

b, = +a, -t c (24) 

have the same truncation error. This explains the general tendency toward contour 
lines of this slope in Figs. 3 and 4, and further validates the analysis of Section 5. 

7. SUMMARY AND CONCLUSIONS 

Let us summarize some highlights of the preceding sections. 
In Section 2, several spatial discretizations were examined for the accuracy of their 

phase and group velocities. Each of the four most accurate were shown to have 
drawbacks which could affect their performance or implementation in two 
dimensions. 

In Section 4, the class of second order two-step methods was combined with the 
particular spatial discretization, a Galerkin finite element method with piecewise 
linear basis functions. The concepts of dominant dispersion relationship, dominant 
phase and group velocity, and dominant or favoured wavenumber were defined and 
illustrated. It was shown that the same dispersion relationship may not be dominant 
for all wavenumbers, and the dominant dispersion relationship may be multivalued at 
some points. 
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In Section 5, three accuracy measure functions were defined to facilitate the search 
for an optimally accurate two-step method. It was shown that the most accurate 
methods for wave amplitude, phase velocity, and group velocity may not coincide. In 
particular, it was demonstrated that the best method for phase velocity may not be 
best for group velocity, and vice versa. Furthermore, a method which most accurately 
represents either velocity may be unstable. In general, the choice of an optimally 
accurate method depends on f, , fi, kLlx, and the relative importance of amplitude, 
phase velocity, and group velocity. 

In Section 6, numerical tests validated the phase velocity, group velocity, and 
amplitude decay factors which were calculated in Section 5. Only in cases where the 
spurious and principal eigenvalues had approximately the same magnitude were there 
significant discrepancies between the analysis and test results. Truncation errors were 
also calculated and correctly predicted the most accurate methods, when they 
remained stabIe. 

For a Galerkin finite element method with piecewise linear basis functions, the 
most accurate and stable two-step methods are characterized by bZ = OSa,. Crank- 
Nicolson (a, = 1) is the best among these since it has no spurious eigenvalues. 
However, it is implicit and may be expensive with respect to computing time. 
Although a similar analysis has shown that Crank-Nicolson is also the most 
accurate with (D7), it is not best for all spatial discretizations. Due to second 
derivatives in their continuity equation, a variation of the linear two-step methods 
introduced in Section 3 is required for the Gray and Lynch “wave equation” method. 
An accuracy measure analysis of this approach shows that the Crank-Nicolson 
analog is not the most accurate [ 3 1. However, in this case, the most accurate methods 
are virtually independent of wavenumber. 

Again it must be emphasized that in the preceding analysis, accuracy was the only 
consideration in determining a good method. In two-dimensional problems this is no 
longer a sufficient criterion. Storage requirements and computational costs are now at 
least as important and may necessitate the use of a method which is less accurate but 
more economical. 

Travelling wave solutions of the form (2) do not exist when the depth in (la) is 
assumed nonconstant. With a forcing frequency w, solutions can now be expected to 
have the form 

(25) 

where Z,,(X) and z+,(x) are complex functions representing the spatial amplitude and 
phase variations. Their precise nature will depend on h(x). For example, in the 
absence of friction and with a linear depth and specific boundary conditions, Lamb 
[6] shows that 

l4x)l cc ~~t2(~x}“z)~ where h(x) = &x and K = #*/Gus. (26) 
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Lynch and Gray [ 1 l] extend this result to the case h(x) = h,,x” for integer n, and 
include linear friction as in (lb). 

In general, the depth dependency of the solution will be such that waves of 
constant frequency will have their wavelength decrease and their amplitude increase 
as they enter shallow water. Phase and group velocity will also become spatially 
dependent. This same behaviour can be expected in a numerical model, although it 
may not be accurately represented. Unfortunately, the model will not differentiate 
between spurious and principal waves; all will become shorter and grow. Although it 
may not be the case analytically, it is possible that with particular numerical schemes 
and depth variations, shorter waves will grow more quickly. This could be disastrous, 
for if the short waves are spurious, they may eventually contaminate the numerical 
solution. 

For some depth variations, it is possible to forecast the rapid growth of short 
waves with an analysis similar to that of Section 4. Since amplitude is now a function 
of both space and time, spatial growth curves (with kAx along the abscissa) are 
required in addition to the temporal growth curves of Fig. 2. In fact, it may be 
necessary to produce these curves for several depth characteristics (e.g., ratios of 
depth gradient to depth). Numerical schemes which favour high wavenumbers could 
then be expected to exhibit rapid growth of short waves and should be avoided. 

In the absence of nonlinear terms, short waves may be generated numerically by 
boundary conditions, an interface, round-off errors, or arise naturally such as through 
a transition from deep to shallow water. Intuitively, this last source can be controlled 
by maintaining the same sampling rate per wavelength everywhere in the model. This 
requires a constant kAx for each wave as it moves throughout the model domain. 
Therefore any transition from deep to shallow water would not correspond to a 
rightward shift on a spatial amplitude growth curve which has kAx as the abscissa 
and which may favour large wavenumbers. Using the dispersion relationship for 
constant depth, a first approximation to uniform sampling is attained by choosing Ax 
proportional to (h(x)) . “’ This choice has further appeal. Stability conditions when 
they arise are frequently in the form 

At < c Ax/(/z(x)) “’ (27) 

for some constant c. Therefore a constant value for Ax/(~(x))“~ implies that deep 
regions of the model where there may be little variation in the numerical solution, are 
not dictating the largest possible time step. This would be the case with constant Ax. 

However, choosing Ax proportional to (h(x))“’ will not affect the generation of 
short waves due to round-off errors, boundary conditions, or an interface. It may only 
control their subsequent wavenumber transitions. If an amplitude growth curve shows 
that these waves will grow faster than the desired longer waveL, numerical difficulties 
can be expected. 

We may conclude that the preceding extended Fourier analysis is a valid technique 
for evaluating the accuracy of both a spatial discretization and a time stepping 
method. Although the analysis was illustrated with finite element solutions of the 
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shallow water equations, the concepts are suffkiently general that they could be 
applied to other numerical techniques (e.g., finite differences) and wave equations. 
Furthermore, the analysis can be extended to two-dimensional equations, as in 113 1. 
Dispersion curves are then replaced by dispersion surfaces and the phase and group 
velocities become vectors. Consequently, both magnitude and direction errors may be 
introduced by a numerical method. Limited experience with such analyses indicates 
that the numerical phase and group velocity are generally not co-directional, as they 
should be for shallow water waves. 
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